Pointwise Convergence of Solutions to Schrödinger Equations

نویسنده

  • SANGHYUK LEE
چکیده

We study pointwise convergence of the solutions to Schrödinger equations with initial datum f ∈ H(R). The conjecture is that the solution ef converges to f almost everywhere for all f ∈ H(R) if and only if s ≥ 1/4. The conjecture is known true for one spatial dimension and the convergence when s > 1/2 was verified for n ≥ 2. Recently, concrete progresses have been made in R for some s < 1/2. However, when n ≥ 3 no positive result is known for the initial datum f ∈ H(R), s ≤ 1/2. We show that limt→0 ef = f a.e. for f ∈ H(R) whenever s > 1/2− 1/24.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS

We study the space of all continuous fuzzy-valued functions  from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$  endowed with the pointwise convergence topology.   Our results generalize the classical ones for  continuous real-valued functions.   The field of applications of this approach seems to be large, since the classical case  allows many known devices to be fi...

متن کامل

Strang Splitting Methods for a Quasilinear Schrödinger Equation - Convergence, Instability and Dynamics

We study the Strang splitting scheme for quasilinear Schrödinger equations. We establish the convergence of the scheme for solutions with small initial data. We analyze the linear instability of the numerical scheme, which explains the numerical blow-up of large data solutions and connects to analytical breakdown of regularity of solutions to quasilinear Schrödinger equations. Numerical tests a...

متن کامل

Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral ‎Equations‎

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

متن کامل

Stability and convergence theorems of pointwise asymptotically nonexpansive random operator in Banach space

In this paper, we prove the existence of a random fixed point of by using pointwise asymptotically nonexpansive random operator and the stability resultsof two iterative schemes for random operator.

متن کامل

Large Time Behavior of Solutions to SemiLinear Equations with Quadratic Growth in the Gradient

This paper studies the large time behavior of solutions to semi-linear Cauchy problems with quadratic nonlinearity in gradients. The Cauchy problem considered has a general state space and may degenerate on the boundary of the state space. Two types of large time behavior are obtained: i) pointwise convergence of the solution and its gradient; ii) convergence of solutions to associated backward...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006